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Abstract--An axisymmetrical flow of a two-layer capillary jet is studied. The most general formulation 
of the jet instability problem is considered. The influence of the governing parameters on the amplification 
factor of the disturbances is investigated taking into account the variation along the jet of the main flow 
velocity profile. The boundary layer approximation to full Navier-Stokes formulation is applied for 
calculation of a stationary mean flow. Stability analysis is carried out for various cross sections along the 
jet on the assumption of a locally parallel main flow. 

Numerical calculations of the corresponding eigenvalue problem reveal two types of unstable 
perturbations connected with the presence of the free surface and interface accordingly. The predominant 
type of instability is defined by the main flow properties. Numerous solutions of the multiparameter 
stability problem are presented. 
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1. I N T R O D U C T I O N  

In connection with the application of two-layer capillary jets in color printers, Hertz & Hermanrud 
(1983) have carried out the most complete experimental studies of  this flow. Their results have 
stimulated further theoretical investigations. 

Radev & Shkadov (1985) applied the one-dimensional inviscid approximation of  Markova  & 
Shkadov (1972) to the stability analysis of  two-layer jets. The asymptotic analysis of  the dispersion 
equation revealed the existence of  two unstable modes which relate to the interface and the free 
surface accordingly. The surface type modes are more unstable than the interface ones for the eases 
considered. Various possible regimes of  jet breaking have been discussed on the basis of  linear 
stability analysis. Similar results have been obtained numerically in Sanz & Meseguer (1985). 

In Kamenov  & Radev (1987) a two-dimensional inviscid model was applied. Results of  the 
considered asymptotic cases are the same as in Radev & Shkadov (1985). It may be noted that 
numerical analysis of  the dispersion equation leads to the discovery of main flows with two local 
maxima of  the amplification factor curve for surface type perturbations. 

Stability analysis of  a viscous compound jet has been carried out in Kamenov  & Radev (1988) 
and Radev & Tchavdarov (1988). At large Reynolds numbers the results of  viscous and inviscid 
stability analyses were shown to be very close for the jet flows with a uniform main flow velocity 
profile. Some limiting cases of  the dispersion equation for such compound jet flows have been 
considered in Petryanov-Sokolov & Shutov (1984) and Shutov (1985), without quantitative analysis 
of  each type of  unstable perturbation. 

Epikhin & Shkadov (1978) have shown that radial variations of  the main flow velocity had a 
strong effect on the amplification factors for the case of  a capillary jet interacting with its 
surroundings. The velocity variations at the initial part  of  the compound jets of  Hertz & 
Hermanrud ' s  (1983) experiments are essential. To carry out stability analysis for such cases it is 
necessary to take into account the main flow variations. 

A numerical method for calculation of  the developing axisymmetric jet flow has been offered in 
Shkadov (1973) for flows with one unknown free surface. This method is based on the boundary 
layer approximation to full Navier-Stokes formulation. In Epikhin et  al. (1989a,b), a generalization 
for flows with a free surface and interface has been carried out. This method is used in the presented 
work. Radev & Gospodinov (1986) have used the transformation of  boundary layer equations to 
Protean coordinates as a generalization of  Duda  & Vrentas'  (1967) method. The survey of  Shkadov 
e t  al. (1982) contains a detailed discussion of the numerical methods for single-layer jets. 
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Complete formulation of  the stability problem, taking into account the effects of the radial and 
longitudinal velocity variations for compound jets, is presented in this paper. All previously 
mentioned articles may be considered as special cases of this formulation. Section 2 contains the 
basic equation and boundary conditions formulation, stationary axisymmetric compound jet flows 
are investigated in section 3 and section 4 contains the stability analysis. Discussion of the 
numerical results is given in section 5. 

2. BASIC E Q U A T I O N S  

Let the capillary jet consist of  two layers of immiscible viscous fluids. For the flow description 
we introduce the cylindrical coordinate system r, 0, z in which the origin is located at the center 
of  some initial jet section and the axis z is directed along a jet flow. The scales of mean length and 
velocity a r e / ~  and U~, and Ro is the radius of  the initial section and U~ = Q/(rcR2),  Q being the 
volume rate of  a jet. Dimensionless values are defined as 

R c 
r = R~y, z = R e x  , T = - -  t, 

u~ 

U z = Ucu , Ur = Ucv , P f =  pO)U2cp , h[ l) = Rch "), ht  2> = Rch (2) 

where T is time, u, and u= are radial and axial velocities, Pr is pressure, h i '  and hi 2) are the radii 
of the interface and surface, and p(l) is the density of the first liquid (we use a superscript 1 for 
values corresponding to the inside layer and a superscript 2 for values of the outward layer). The 
scales making provides the unit dimensionless rate of a jet. 

For  axisymmetric flows the Navier-Stokes equations are 

~u O (yv ) 
Y~x + ay O, 

Ou Ou Ou 1 Op +v(° j) ['02u OZu 

Ov Ov Ov 1 0 p  v~d ) f 02v 02v 
05 + U Ox + v-5-fy = p(oj, Oy + ~ e e  t~Sx2 + Oy ~ [11 

where p(o 1) = v~ l) = 1, p{o 2) = Po =- p(2)/pO), v~02) = Vo = v(2)/v °~, 
"y(1) viscosities of  the fluids, Re = U ¢ R d  , Fr = U~/x/gR~ and g 

case Fr = oo corresponds to a jet flow without an external mass force. 
The boundary conditions at the interface (y = h (°) include the kinematic equation, the continuity 

of the velocity components and the tangential stresses and the condition for normal stresses in 
layers taking into account the stress induced by the interface tension a m 

0h (i) 0h0) 
0---7-- + u ~ = v, [u]~ = 0, [v]~ = 0, [21 

1 8u'] 1 
+ ;~-~yj -I Fr 2 , 

-4 , j = l , 2  
y Oy 

p{J) and v ~j) are the densities and 
is the acceleration due to gravity. The 

K 

[p(d ~ V°o)P.,l~ = 0, [P..]7 + W e  = 0; 

where We = p ( l ) U 2 R c l o ( I ) .  In [2] the notation [s]~ = s (2) - s  (t) is used. The expressions for stresses 
p , , .  p,.  and curvature x are determined as 

p.=lffl_?h">y](aU 
\--~-x ] _[\~yy+~xx)_2_._~__x (~_ OYjJSV~' d ~ [ L  

P "  = - P  + R--A-7-W-L  + ax a x j j  

) 1 ['02h 0) d 2 d 2= 1 - [3] 
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At the free surface (y = h (2)) the radius h (2) is related to the velocity by the kinemat ic  equat ion,  
the tangential  stress mus t  vanish and the no rma l  stress is balanced by the stress induced by the 
surface tension a (2) 

Oh (2) Oh(2) ao x = 0 
O - - - t - + U ~ - x  = v ,  p , ~ = 0 ,  P " " - W e  [41 

where a0 = a(2)/tr °) and the expressions for  Pn~,P,,  and x are similar [3]. 

3. A S T A T I O N A R Y  A X I S Y M M E T R I C  F L O W  

T o  define a s ta t ionary  axisymmetr ic  jet flow an approx ima te  system o f  equat ions  and bounda ry  
condi t ions  is used, see Shkadov  et al. (1982) and Epikhin et  al. (1989a,b) 

a f  0 (yV)  
Y ~-x-x + - - - ~ y  = 0  , 

u~U ~U Y~J) I/O2U 1 aU'x 1 
+ V ay  R e ~ - ~ z + ; - ~ y ) + F r E r  z +  F'j) '  j =  1,2, 

I 1 f 1 d H  O, a 0 dH(2)~ a 0 . F t ) . . . .  + F (2) = d H  (2) 
W e  ~k(H(l)) 2 d x  (H(2))  2 dx J '  poWe(H(2)) 2 dx ' 

OU 
y = 0 :  ~ = 0 ,  V = 0 ;  

= H(I): U dH(l) r = v ,  Y ay j ,  

d H  (2) c~ U 
y = H ( 2 ) :  U - - =  V, - - = 0 .  [5] 

dx c3y 

This app rox ima t ion  is similar to that  used in the theory o f  a bounda ry  layer. 
To  formula te  the p rob lem o f  a s ta t ionary  flow, system [5] is comple ted  by the initial condi t ions 

a t x = 0  
H ° ) = h 0 ,  H (2)=1, U ( j )=U~s)(y) ,  j = l , 2 .  [6] 

Fo r  numerical  solutions [5] and [6], the col locat ion me thod  is applied, see Shkadov  (1973) and 
Epikhin  et al. (1989a). The  results o f  computa t ions  show that  the velocity o f  the jet flow tends 
asymptot ica l ly  to un i form distr ibution across jet sections with the growth  of  x independent ly o f  
the initial velocity profile "'(J) " u0 ,J = 1,2. 

As an example ,  let us consider  a jet  in which the first fluid is water  and the second is benzene 
(Po = 0.752, v0 = 0.709, a0 = 1.5) for  the case Re = 100, We = 20. Fo r  the initial profile 

U~o j) = 3flU)y2(O.5y 2 - 1) + ~u), j = 1, 2, 

¢(2)_ 1 
fl(2) = fl(l) = P0Y0/~(2), 

1 -- (1 -- povo)h4(h g - 1.5)' 

e (l) = E (2) + 3(1 - povo)hg(O.5h g - l)fl (2) [7] 

at  e (2) = 3, h0 = 0.5 two examples  o f  s ta t ionary  flows are depicted in figure 1 where definitions of  
mean  axial velocities are used 

U ~ ) =  2 r ,~,, r m2, 
(H(I)) 2 Jo y g  ° ) d y ,  U~  ) (H(2)) 2 2 -- ( H 0 ) )  2 .In(,) yU(2)  dy. 

F o r  the case Fr  = 1 in figure 2, velocity profiles at some jet sections are presented.  
I t  should be noted  that  p rob lem [5], [6] has solutions as a uni form flow, i.e. a flow with a cons tan t  

velocity profile at  a jet  cross section, in the cases 

(a) Fr = o% 

P0 (b) F r ~ o o ,  p o < I , v / ~ =  
(1 ) t7 o Po 
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Figure 1. Stat ionary flows at Fr  = ~ (curves 1 and 2) and Fr  = 1 (curves 3 and 4). Curves 1 and 3 
correspond to H (~) or U~ ), 2 and 4 to H (2) or U t2). 

hO0 q(t) = 2 yU{o t) dy  

is the rate of the first layer. This solution is represented as 

1 y d H  (2) 
H" >  = H ( 2 ~  i], U = (H(2~)--- ~ ,  V = - -  

and the jet radius H (z) is defined by the equation 

l(, ) o0( ) x 
2 ( ~ : ' ) '  l + p - 7 - ~  - 1 = F--~" 

(H(2)) 3 dx 

This means that a uniform flow is possible at a gravityless case (a) or at a unique rate of  i n n e r  

layer (b). The impossibility of  uniform flow in other cases is connected with the compounded act 
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of  gravity and capillary forces. Gravity accelerates a flow along the x-direction which leads to H °) 
and H (2) variation as follows from the kinematic conditions in [5]. The resulting curvatures of  the 
interface and surface produce two different capillary forces F °) and F °). Case (b) corresponds to 
the equality of  these forces. 

In other cases, computation results show that the velocity profiles at the cross section approach 
uniform values in each layer as a result of  viscous force effects at an initial region of  x. As follows 
from velocity continuity at the interface, an area from close to it in which the velocity is varied. 
Across this vicinity one layer accelerates the other and vice versa. With an increase of  the 
x-coordinate, mean velocities are approached in the layers. Thus at x ~  a velocity profile 
approximates uniform flow. 

4. THE S T A B I L I T Y  ANALYSIS  

To investigate the stability of  a stationary flow the assumption of  its local plane-parallel feature 
is applied according to which the ratio of  a typical scale along the x-coordinate for the 
perturbations to the corresponding scale of  the main flow is assumed to be small, see Shkadov 
(1973). The assumption allows disregardance of  the radial velocity and the variations of  the main 
flow characteristics near some axial coordinate value x , ,  where the growth of  small perturbations 
is studied. For  stability analysis the non-stationary solution is represented in the form 

u(x , y , t )=U(x , , y )+uI (~ , z l ,  z), V=Vl, P = P l ,  

h(')(x, t) = H , [ h ,  + h~l)(~, z)], h (2) = H, (1  + hi 2)) [81 

where H ,  = H(2)(x,), ~ = (x -- x , ) /H , ,  ~ = y /H , ,  T = t /H, ,  h ,  = H(Z)(x,)/H,. 
After substitution of  [8] into [1], linearizing the resulting equations with respect to the small 

perturbations and considering solutions of  the form f(r/)exp i~t(¢ - c x ) ,  we obtain in each of  the 
layers 

, W4 t W2 
W 1 ~--- - - ,  W 2 = - - ~ W  1 - -  - - ,  

i,,v(y)\ w 3 i~tp(oJ)V~ ) w~=p~)~l~ U - c - " °  |w2+ - - w 4 ,  
Re,  J ~/ Re ,  

[ i R e , ] i R e , / , ~ )  
w~=~trl ~t +--~) ( U - c )  w. + - - ~ S ~ I U  w 2 + ~ w 3  [9] 

Y 
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Figure 2. Velocity profiles at x = 0 (curve !), 10 (curve 2) and 50 (curve 3). The dashed lines correspond 
to the first layer and the continuous lines to the second layer. 
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where Re ,  = Re H ,  and functions w I ( 7 )  . . . . .  W4(~]) are connected with amplitudes of variables by 
the relations wl = u, w2 = - i v ,  w 3 = qp, w4 = Ou'. The prime in [9] and below symbolizes the 
differentiation with respect to the variable q. 

The linearized boundary conditions at the interface are rewritten in the form 

r /=  h , :  w, 4 ~(U - c~) w2 i = 0, [w2]~ = 0, 

1 2 t ~ o ~ h , W l +  1 -U-~-cj ] +w3 , - a W e ,  h , ( U - c )  w2=O' 

where We,  = We H , .  
At the jet surface we obtain the relations 

q = l :  w l + -  ! -- w2 2apovoW3=O, cz o~(U--c) 2p0v0 We,  

l ( x ( U  - -  c )  o~ w 2  --{- w 4  ~-.~- 0 .  [111 

In the case of spatial periodic perturbations, [9] and the boundary conditions [10] and [11] form 
for bounded solutions the eigenvalue problem for c; the stability of the main flow is determined 
by the sign of  c~ (here and henceforth the subscripts i and r mark the imaginary and real parts of 
the corresponding expression). In this problem the role of  parameters is played by P0, v0, a0, Re, ,  
We, ,  h , .  

To solve the problem the numerical method is used according to which two linearly independent 
solutions are determined in the regions of  both layers. For determination of these solutions near 
~/ - -0  they are represented in the form 

w~,~) ~ ,,,0) .m k = l ,  ,4, n = l , 2  [12] 
" k ( n ) ( m ) q  ~, " " • 

m = 0  

see Lessen & Paillet (1974). After substitution of [12] into [9] one can define two independent 
solutions; the series [12] up to O(q 2) are 

ct 
(a) ,.,(i) _ 1, ,.,(1) ..,o) = O, ..,(1) = O, 

,v l( l)  - -  ,v 2(i) = - - ~  t / ,  ,v 3(i) ,r  4(i) 

(b) ,,,(~) = 1, ,.(1) =0 ,  w (1) =0 ,  "'(') =0 ,  [13] ,v t(2) ,v 2(2) 3(2) ,v 4(2) 

F o r j  = 1, [9] with initial conditions [13] at some ~/close to zero are integrated up to r /=  h , ,  the 
orthonormalization being performed at the interior points, see Godunov (1961). For r/ = 1 the 
following set of initial conditions satisfying [11] is used 

(a) ,,,(2) =0 ,  ,,,(2) _ 1, 
vv I(1) ,v 2(I) - -  

3(,~ = - R e - - - ~ -  1 - U - - - - - - c  1_2~povoWe, (1 - ~ 2 ) _  U' , 

S "  
W(2) ~-  (X 

o~(U-c) '  

(b) (2) i Re ,  w~) = 0, w~)2)= 1, w~2)= 0. [14] 
W1(2) = 2aP0V0' 

Equations [9] for j = 2  with initial conditions [14] are integrated up to r/ = h ,  also. The 
characteristic equation for the determination of eigenvalues is defined by [10] and has the form 

detllLr,, II = 0 [15] 
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where matrix elements are represented as 

LI,n+2(j_I) ( - -1)  j (J) W~{)) , 
= w~.)-4 oe(U-c) 

[ - -  1 l J u , ( J )  L2,n+2(j_I)~-~. . !  ,v 2(n), 

(2io0)vO)[ ( h'U'~w~),o]+"'°)~ 
'+<;-c/ ""'S 

1 -- Oth,) 2 wU ) 
+ (j  - 2) ~ w-~  ~ :  c) 2¢.,, 

L4,, + 2o_ I)= ( - 1)Jp (j)v(j ) [~(\ U~CU" ~z) w~2 ) + w 0)4(.)S,~ n,j=l, 2. [16] 

The values of  the functions in [16] are calculated at tl = h , .  The roots of  [15] are defined by 
Newton's  method. 

5. D I S C U S S I O N  OF T H E  R E S U L T S  

By varying the initial conditions in [6] it is possible to obtain different solutions of  the problem 
of  steady-state flow. The described numerical method of  the stability analysis is suitable for 
computat ion of  stability parameters, namely lengths, velocities and amplification factors of  
unstable waves, at any values x. It allows definition of  the wave with a maximal growth rate at 
a fixed jet cross section and calculation of  wave parameter  variation along x. Because the stability 
problem is defined by six governing parameters: P0, v0, a0, Re, ,  We ,  and h , ,  the complete 
investigation in their space requires an unacceptable volume of computations. Below, the effects 
of  the parameters  are demonstrated by means of  cases in which one of  the governing parameters 
is varied while the others remain fixed. As the basis for investigation, the parameters of  the 
water-benzene system are used. To carry out stability analysis, jet flows with certain given velocity 
profiles are considered. 

For  the case U(q) = 1 the stability of  a compound jet has been studied in the papers mentioned 
in the Introduction. Two types of  instability disturbances have been found. The first corresponds 
to the interface between the layers and the second relates to the jet surface. For inviscid fluids in 
the case of  large We, ,  the disturbances of  the second type dominate, see Radev & Shkadov (1985), 
Kamenov  & Radev (1987) etc. and this conclusion is confirmed for a viscous jet (Kamenov & Radev 
1988). For  example, in figure 3 results are depicted for two values of  We ,  at a 0 = We,/13.3 which 
connect to variation a ¢1) at a ¢2) = const. (In the figure the dashed and continuous curves correspond 
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Figure 3. Amplification factors in the case h, = 0.5, P0 = 0.752, v 0 = 0.709, Re, = 100 and U = 1. Curves 
1 and 2 correspond to We, = 1.33, curves 3 and 4 to We, = 133. 
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F i g u r e  5. A m p l i f i c a t i o n  f ac to r s  in the  case  P0 = 0.752,  v 0 = 0.709,  a o = 1.5, R e ,  = 100, W e ,  = 20 a n d  
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F i g u r e  6. A m p l i f i c a t i o n  f ac to r s  in the  case  h ,  = 0.5,  P0 = 0 .752,  v0 = 0.709,  a0 = 1.5, W e ,  = 20 a n d  U = 1 ,  
C u r v e s  1 a n d  2 c o r r e s p o n d  to  R e ,  = 100, curves  3 a n d  4 to  R e ,  = 200. 
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to interface type disturbances and surface type disturbances, respectively.) Also note the predom- 
inance of  the surface disturbances for finite values of We, .  

The examples of tr0 variations which correspond to various tr (2) at a(1) = const, are shown in 
figure 4. It can be seen that the maxima of  the amplification factors for disturbances of both types 
are increasing with tr 0 growth and the surface perturbation are more dangerous. 

The effect of the relative thickness factor is illustrated in figure 5. The essential predominance 
of the surface instability modes in the case of the thin first layer can be noted here. An increase 
of the amplification factor in accordance with Re ,  variations for disturbances of both types is 
shown in figure 6. The decrease of the amplification factor with the increase of P0 (or p(2)) and v 0 
(or v (z)) is shown in figures 7 and 8. One notes that the wave velocity g = 1 for disturbances of 
both types at U = 1. The aforementioned results on the instability of  jet flows with constant velocity 
U = 1 are in accordance with the conclusions of Radev & Shkadov (1985), Kamenov & Radev 
(1988) and Radev & Tchavdarov (1988). 

The examples of  stability characteristics calculation for the non-uniform velocity profile U given 
by [7] at E (2) = 2 and h0 = h ,  (figure 9) are depicted below. Use of a main flow velocity in the form 
[7] is for two reasons. One is connected with the parabolic velocity profile of a jet at the output 
section of  a nozzle, see Hertz & Hermanrud (1983). To satisfy the boundary conditions from [5] 
it is necessary to replace the parabolic profile in [7]. It may be noted that the stability analysis results 
based on [7] lose accuracy at ~ ~ oo because the local velocity distribution [7] is not the solution 
of  [5] for all x. The other reason is that the velocity profile [7] allows consideration of the instability 
mechanism related with the discontinuity of a velocity gradient dU/dy at the interface between 
layers. This instability mechanism was studied in Hooper  & Boyd (1983). The relative role of the 
instability mechanism connected with the discontinuity of the velocity gradient and with the 
capillary waves will be demonstrated below. A similar situation occurs in the case of a two-layer 
film flowing down an inclined plane. The wave formation at the interface of the films is connected 
with shear flow instability and with the capillary instability, as was shown in Sisoev & Shkadov 
(1992). 

Let us repeat previous computations for a non-uniform velocity profile. The variation of We,  
for We,/tr 0 = const, which corresponds to different values of a ") shows a non-essential effect on 
the growth rate of surface type waves (figure 10). A decrease of  the interface tension tr °), which 
corresopnds to the growth of  We, ,  leads to stabilization of the interface type waves which is usual 
for capillary instability. Unlike figure 3, the interface waves dominate for finite values of  We,.  

Figure 11 demonstrate the effect of tr 0 which can be in interpreted as a (2) variation at other fixed 
physical parameters. Unlike the case of figure 4, at small a0 the maximum growth rate of the 
interface waves is larger than the corresponding value of the surface waves. The surface type 
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perturbations become most dangerous as the value of  ~0 grows. In previous works of  Kamenov 
& Radev 0987, 1988), Radev & Tchavdarov 0988) only the amplification factor curves with two 
local maxima for the surface type perturbations have been obtained. 

Figure 12 presents the calculation results for two values of h , .  Unlike figure 5 in the case of the 
thin first layer, the interface waves predominate. As follows from figures 5 and 12 at h ,  = 0. l, the 
velocity profile variation distinguishing these cases and corresponding with the small rate variation 
in layers, namely q(1)=0.01 and q(I)=0.02, respectively, leads to a drastic effect on the 
amplification factor curves. This can be treated as the shear flow instability effect. 

The interface waves can also be more dangerous for different Re ,  (figure 13). It can be noted 
that growth of the Re results in a stabilization effect on the surface type perturbations which differs 
from the case in figure 6. 

The results of figure 14 confirm the effect of  P0 which are depicted in figure 7. Figure 14 
demonstrates that the low-density jet cover perturbations of both types have comparable 
amplification factor maxima. Increase of the second layer density leads to the essential predomi- 
nance of the surface type perturbation. 

Unlike figure 8, in figure 15(a) predominance of the interface waves for v0 = 0.1 is shown. It can 
be noted that increasing v0 leads to destabilization of the surface waves. Thus, increase of the 
external layer viscosity leads to predominance of surface type instability rather than interface 
instability. Wave velocities cr are presented in figure 15(b). It can be noted that for waves of both 
types, the values of Cr are close to the main flow velocity at the interface or surface correspondingly 
and this is common for all calculations. 

One notes that in previous examples connected with variations of P0 v0 and h , ,  results are given 
for various jet flow. Figure 16 shows the results of stability analysis for two sections of the jet 
flow depicted in figure 1 at Fr = ~ .  At x = 0 the interface waves are more dangerous but at x = 100 
the surface waves dominate. This result demonstrates the essential role of the initial region of a 
flow. 

Let us consider the case of  quicker cover in comparison with the inner layer. The results for the 
velocity profile [7] at E (2) = - 0 . 4  (figure 9) are similar to the case e(2)= 2. For example, figures 17 
and 18 show the effects of  the interface tension and the surface tension. 

The presented results show that conditions of the jet formation define the dominant type of 
disturbance. This has been confirmed in the experiments, see Hertz & Hermanrud 0983), where 
two regimes of  jet disintegration at a low volume rate of a jet have been observed. One is similar 
to a single-layer jet and relates to surface collapse. In the second regime the inside liquid 
disintegrates into drops before the jet surface is destroyed. The latter may be connected 
with the predominance of interface type waves. In the experiments the role of tension has been 
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demonstrated, namely, at a large surface tension the jet breaks up by the first method, in accordance 
with the results in figure 11, and an increase of interface tension determines the disintegration of 
the inside layer much faster than the compound jet itself (figure 10). 

For estimation of the jet disintegration regimes Radev & Shkadov (1985), Sanz & Meseguer 
(1985) and other investigators have used the results of linear instability analysis. They have 
considered the case of a uniform main jet flow with U = 1 and surface type perturbations only. 
The above-given results show that it is necessary to also consider interface type perturbations and 
to take into account the non-uniformity of the main flow. This implies that accurate calculations 
of the amplification factors for various positions along the jet with a fixed disturbance wave number 
are needed. Such calculations for a single-layer capillary jet interacting with surroundings were 
accomplished in Epikhin & Shkadov (1978). The above-outlined methods make it possible for 
stationary flow calculations and stability analysis of compound jets to be carried out. 
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6. CONCLUSIONS 

The stability of a stationary axisymmetric flow of a two-layer capillary jet has been considered 
as the most common formulation. Two types of unstable axisymmetric disturbances, which relate 
to the interface between the layers and the jet surface, have been investigated. The dominant type 
of waves is defined by six governing parameters. The surface type perturbations dominate in the 
case of a uniform main flow velocity profile. Any other perturbation would be most dangerous if 
the velocity profile varies at the jet cross section. Numerous examples of the stability problem 
solution demonstrating the effects of the governing parameters and the main flow feature variations 
are presented. 
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